Alloy Wire JP

日本の連絡先

Care of Tomoe Engineering Co., Ltd.
Osaki Bright Core
5-15, Kitashinagawa 5-chome,
Shinagawa-ku, Tokyo 141-0001

電話番号: 0081-3-3442-5142
メールアドレス: o-koiwai@tomo-e.co.jp

Overview – Heating 素子 Design and Calculation

Overview – Heating 素子 Design and Calculation

To perform as a heating element the tape or wire must resist the flow of electricity. This resistance converts the electrical energy in~ heat which is related ~ the electrical resistivity of the metal, and is defined as the resistance of a unit length of unit cross-sectional area. The linear resistance of a length of tape or wire may be calculated from its electrical resistivity.

Where:

ρ Electrical Resistivity (microhm.cm)
R 素子 Resistance at 20 °C (ohms)
d Wire diameter (mm)
t Tape thickness (mm)
b Tape width (mm)
l Tape or wire length (m)
a Tape or wire cross-sectional area (mm2)

For Round Wire

For Round Wire

For Tape

For Tape

For Tape

As a heating element, tape offers a large surface area and therefore, a greater effective heat radiation in a preferred direction making it ideal for many industrial applications such as injection mould band heaters.

An important characteristic of these electrical resistance alloys is their resistance ~ heat and corrosion, which is due ~ the formation of oxide surface layers that retard further reaction with the oxygen in air. When selecting the alloy operating temperature, the material and atmosphere with which it comes in~ contact must be considered. As there are so many types of applications, variables in element design and different operating conditions the following equations for element design are given as a guide only.

Electrical Resistance at Operating 温度

With very few exceptions the resistance of a metal will change with temperature, which must be allowed for when designing an element. As the resistance of an element is calculated at operating temperature, the resistance of the element at room temperature must be found. To obtain the elements resistance at room temperature, divide the resistance at operating temperature by the temperature resistance fac~r shown below:

Where :

F = 温度-Resistance Fac~r
Rt = 素子 resistance at operating temperature (Ohms)
R = 素子 resistance at 20°C (Ohms)

温度-Resistance Fac~r

Alloy 温度-Resistance Fac~r (F) at:
20°C 100°C 200°C 300°C 400°C 500°C 600°C 700°C 800°C 900°C 1000°C 1100°C 1200°C
RW80 1.00 1.006 1.015 1.028 1.045 1.065 1.068 1.057 1.051 1.052 1.062 1.071 1.080

 

RW45 changes little in resistance as temperature rises, having a temperature-resistance fac~r of +0.00003/°C in the 20-100°C range.

Download Design Guidelines

 Click here ~ download a spreadsheet for quick calculations

Alloy Wire
詳細情報につきましては弊社までご連絡ください